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ABSTRACT

Demonstrated, documented performance is a prerequisite before a data fusion system may
be deployed. Developers and users must be confident about fusion system performance
across the full range of operating conditions and scenarios the system is anticipated to
encounter. We report on an approach to multi-sensor data fusion performance character-
ization which systematically explores system performance and quantifies performance
degradation at and beyond the limits of the intended application scenarios. A quantitative
characterization of the complexity of test scenarios supports our experimental approach to
performance assessment. Scenario complexity characterization directs creation and sys-
tematic variation of test scenarios and facilitates efficient exploration of the range of rele-
vant fusion scenarios. Data Fusion performance metrics measure the quality of the track
picture produced by the data fusion solution and the correctness of the intermediate con-
stituent processing steps. Track picture quality is measured by the accuracy, precision,
consistency, and completeness of the fused track picture. Constituent metrics function as
“built-in-test” procedures for critical processing steps and reveal causes for sub-optimal
performance. They indicate when the fusion system under test operates on a scenario
which approaches the limits of its capabilities. We successfully applied the complexity
and performance measures described in this paper to the development and validation of
the Rotorcraft Pilot’s Associate (RPA) Level 1 Sensor Fusion component.

1. INTRODUCTION

Data Fusion Performance Assessment reveals whether a Data Fusion (DF) solution is appropriate for the intended tar-
get environment, sensor suite, and computing platform constraints. Performance assessment determines the range of
operating conditions under which a DF solution performs at optimal, near-optimal, and degraded levels, and it pro-
vides a rational basis for choosing between competing DF solutions. During fusion system development, rigorous
performance assessment assists in selecting and tuning algorithms for repeatable, robust, best-of-breed performance.

The target of our performance assessment is the class of object-level, i.e. Joint Directors of Laboratories (JDL) Level
1, multi-sensor multi-target fusion systems. This class of DF systems accepts single-sensor contacts and tracks from
multiple sensors and produces a consolidated track picture, ideally consisting of a single smoothed track for each tar-
get. Each output track combines the features contributed by all concurrently reporting sensors. The exact variant of
multi-sensor fusion, e.g. centralized, hierarchical with or without fused track feedback, etc., is irrelevant to the perfor-
mance assessment approach described here.
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The Data Fusion performance metrics presented in this paper measure the quality of the track picture produced by the
DF solution and the correctness of the intermediate constituent processing steps. Track picture quality is measured by
the accuracy, precision, consistency, and completeness of the fused track picture. Constituent processing steps, such
as update-to-track association, merit their own metrics. Constituent metrics reveal causes for sub-optimal perfor-
mance and indicate when the DF solution operates on a scenario which approaches the limits of its capabilities.

Realistic multi-sensor multi-target fusion scenarios are difficult enough to preclude perfect fusion system perfor-
mance in real time in most cases. Complexity metrics quantify the difficulty presented by a specific scenario and pro-
vide a basis for explaining and predicting varying levels of fusion system performance. Complexity metrics allow
performance comparisons across diverse scenarios and they direct systematic exploration of the capabilities of a
fusion solution.

Complexity metrics estimate performance when direct performance measurement is problematic, e.g. during run-time
in actual deployment where ground truth is not available. Most of the performance metrics depend on the knowledge
of ground truth, which is available only during simulation runs or from an instrumented test range. Performance met-
rics calculated without ground truth are less reliable. Complexity assessment compensates for the reduced value of
the performance metrics and assists in detecting when fusion performance declines and/or fusion system tuning
becomes advisable.

The complexity metrics presented in this paper characterize and quantify the difficulty inherent in the ground truth,
i.e. the arrangement and behavior of the tracks operating in the scenario, the ambiguity present in the stream of sensor
reports, and the complexity of decisions faced by the correlation stage of the fusion system.

Most of the previously reported assessment approaches either focus on the performance issues related to individual

tracks, such as track initiation probability and delay time1, to individual algorithms2, or attempt to characterize the

improvement of operator performance when assisted by multi-sensor fusion versus individual sensor data streams3.
Recently, interest has surfaced in the evaluation of relative performance of competing fusion solutions in the context

of a fusion testbed4. Daum5 reports an analytical method for bounding fusion performance in terms of the error cova-

riance estimate. Boily6 reports methods to evaluate tracking, identification, and global performance. His approach
suggests a way of measuring track precision independent of ground truth. Our approach to performance evaluation
addresses track picture quality as well as individual track fidelity. The approach reported in this paper supports per-
formance validation, quantification, comparison, and prediction. Quantitative performance comparison also supports
selection of fusion solutions and tuning of parameterized fusion systems.

ATL has successfully used the complexity and performance metrics to construct comprehensive sets of test cases, to
evaluate test case complexity, and to measure the performance of competing fusion algorithms in the context of the
Rotorcraft Pilot’s Associate Level 1 data fusion subsystem.

The Rotorcraft Pilot’s Associate (RPA) Advanced Technology Demonstration (ATD) is Army Aviation’s most ambi-
tious science and technology program. Its objective is to apply artificial intelligence and state-of-the-art computing
technologies to manage and integrate next generation mission equipment and battlefield information in order to
enhance the lethality, survivability, and mission effectiveness of combat helicopters. The primary element of the RPA
system is the Cognitive Decision Aiding Subsystem (CDAS), which performs situation assessment, planning, and
cockpit information management. Since the potential utility of associate systems technology is wide ranging, the pro-
gram is focused not only on individual helicopter platforms, but also on the requirements of warfighting commanders
and the combined arms team. This Advanced Technology Demonstration program is managed by the Army Aviation
Applied Technology Directorate. Boeing Helicopter Systems is the RPA prime contractor, Lockheed Martin Federal
Systems is the major subcontractor, and Lockheed Martin Advanced Technology Laboratories is responsible for the

real-time, compute-intensive Data Fusion Subsystem7. The data fusion system contains an innovative approach to the

integration of classification data into the fusion process8.

RPA real-time multi-sensor data fusion (DF) integrates inputs from large numbers of on-board and off-board sensors
which describe ground and air targets as well as missiles. Mission scenarios are characterized by high target densities,
high target maneuverability, rapid sensor update rates, and significant data uncertainties. Sensor errors and uncertain-



ties affect kinematic and classification attributes received by DF. Sensors report track classifications with varying
specificity.

Our experience has shown that the approach presented in this paper supports a thorough analysis of RPA fusion sys-
tem performance covering the broad range of scenarios envisioned for the RPA reconnaissance and attack missions.
The Data Fusion system has been integrated into the complete RPA system and is undergoing final tests in prepara-
tion for the RPA flight testing, which will begin later this year. Complexity analysis reduced the amount of testing
required for performance validation and supported comparative evaluation of algorithms. In the future, we plan to
develop mechanisms which dynamically adapt a fusion system to a changing environment with the help of the perfor-
mance and complexity assessment techniques.

In Section 2 and 3 we describe the performance and complexity assessment methods in greater detail. Section 4 con-
tains a description of the tests and the performance and complexity results obtained on the RPA fusion project. Sec-
tion 5 concludes with our analysis and lessons learned of the performance assessment methodology.

2. PERFORMANCE ASSESSMENT

The performance of the Situation Assessment (Level 2), Threat Assessment (Level 3) and Process Refinement (Level
4) modules depend on the quality of the track picture created by the Level 1 multi-sensor multi-target fusion sub-
system. Ultimately, enhanced operator performance, e.g. pilot performance in the RPA system, is the goal of the
fusion suite. Performance assessment at Levels 2 and above are insufficient as a guide to system development,
because they introduce extraneous variability associated with the display and control system, user training levels, etc.
The performance metrics described in this paper can easily be related to operator performance and, at the same time,
support thorough Level 1 fusion system evaluation.

Figure 1 shows the hierarchy of performance measures proposed. DF performance is measured by the accuracy and
completeness of the fused tracks, which are output to the Situation Assessment module. The output tracks contain
position and velocity (kinematic) estimates and classification hypotheses for each individual target track. A clean and
accurate track picture generated by DF despite redundant and imprecise sensor reports is a prerequisite to superior
pilot situational awareness.

2.1  Correlation Accuracy Metrics

Correlation accuracy is the central contributor to Level 1 fusion performance. In the correlation step, newly received
sensor reports are correlated with fused tracks already held by the fusion system, i.e. the fusion system decides for
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each new report, which of the existing fused tracks it updates, or if it should initiate a new fused track. An error in this
step significantly compromises the accuracy of subsequent processes, at least for a period of time following the error.
Persistent track features, such as track classification and friend/foe indication, are especially vulnerable, because
these attributes are propagated unchanged, unlike position and velocity. Major processing steps that precede correla-
tion include track pre-processing, prediction, and clustering; major steps that follow correlation include fusion, i.e.
the actual combination of the reported features with the existing track features - this includes track filtering, and post-
precessing.

The correlation process consists of a set of similarity or gating functions and an assignment algorithm. Similarity
functions measure how closely the newly received reports match the existing tracks to be extended; gating functions
eliminate candidate assignments whose similarity falls below a threshold. The assignment algorithm determines a
locally or globally optimal assignment of sensor reports to existing tracks. The RPA fusion solution employs the glo-
bally optimizing JVC (Jonker-Volgenant-Castanon) assignment algorithm. The development of fast but powerful,
multi-dimensional similarity functions remains a research issue for the fusion community. Multi-dimensional similar-
ity compares position, velocity, classification, identification, and other target features useful in distinguishing targets.

The correlation accuracy measure is the central metric of our performance assessment approach. It alone indicates
most succinctly fusion system performance. Low correlation accuracy, i.e. correlation errors, inevitably corrupts all
attributes of the fused track picture. Low performance of subsequent steps, such as state estimation and classification
fusion, complicate the correlation problem and are likely to lead to correlation errors.

Correlation accuracy is measured at fusion system run-time by a small “built-in-test” code segment. It takes advan-
tage of the availability of ground truth in the simulated scenarios. This measure is therefore unavailable during real
operations. It is computationally cheaper to calculate and record the metric than to store all of the contributing data
involved in their calculation. The correlation step may utilize all of the report and track attributes in an nxm compari-
son. The effort to extract and store all these features exceeds the effort to calculate a compact metric of correlation
difficulty. Real-time metrics are essential enablers for the promising concept of run-time fusion system performance
tuning.

2.2  Output Quality Metrics

The track picture and its constituent tracks are the externally observable outputs of the fusion system. They represent
the attempts of the fusion system to reconstruct the ground truth scenario from sensor reports of varying quality and
coverage. We have defined metrics which measure the quality of the instantaneous global track picture and the fidelity
of the individual tracks which make up the track picture. Global track picture metrics evaluate the total number of
tracks reported, the occurrence and persistence of false tracks, and the frequency with which tracks are missed. Indi-
vidual track quality is measured by the distance of the reported target position to the actual position. The minimum,
maximum, and average of the distances over the life of the tracks are computed. Track classification is evaluated by
the accuracy and precision of the target classification. Classification precision measures whether the system correctly
and effectively used target feature clues to narrow the set of possible platform classes.

Track picture metrics are sampled at regular time intervals and accumulated. The metrics evaluate the track picture as
an instantaneous estimate of the true arrangement of targets at the sampling time. This approach does not attempt to
evaluate the accuracy of kinematic track histories. Thus, if the fusion system were to mistakenly indicate that two
tracks crossed, the error is only counted once when it is committed, even though its effects persist in the historical
picture of the two tracks. On the other hand, errors in target classification or other persistent track attributes are
detected and counted any time they are found in the fusion system output. Metrics on the fusion system output are
calculated in non-real-time on the set of recorded fusion system output tracks.

2.3  Throughput Metrics

Fusion system throughput measures how many track updates can be processed in a given time period. Throughput
impacts track picture reconstruction accuracy, because track updates must be skipped or output latency increases
when system throughput is exceeded by the number of reports received. Track latency measures the delay until infor-
mation about a track is handed off to the Situation Assessment module. Of most interest is the delay introduced by



fusion subsystem processing. Fusion system throughput and latency depend on the performance of the computing
hardware and on the complexity of the fusion algorithms.

Testing of the RPA Level 1 data fusion subsystem concentrated on measuring correlation accuracy, global track pic-
ture accuracy, and kinematic accuracy of the fused tracks on a multitude of test scenarios. Fusion subsystem through-
put was also measured. Track latency is constant and determined by the fixed 10 Hz processing cycle of the RPA
fusion solution.

3. COMPLEXITY ASSESSMENT

The accuracy of the track picture produced by Data Fusion depends on the quality of reports received from the sensor
suite. Sensors performance, in turn, is influenced by the complexity of the ground truth scenario. All performance
metrics must, therefore, be interpreted with respect to the level of complexity/difficulty posed by the test scenario.
Figure 2 shows a dependency chart which relates errors in the fusion system output to their contributing factors.

ATL developed three complementary complexity metrics. One (Ground Truth Complexity) measures the test scenario
directly, the second (Sensor Report Complexity), see Figure 3, measures the test scenario as seen through the stream
of sensor reports, the third (Assignment Level of Difficulty) measures complexity of the correlation step during
fusion module execution. Ground Truth Complexity predicts the complexity of correctly correlating track updates to
fused tracks from the proximity and maneuverability of the ground truth targets. Sensor Complexity factors in sensor
noise, i.e. errors in reported target position, and report intermittence. The Assignment Level of Difficulty is a DF
internal measure which is calculated during DF execution and evaluates the actual difficulty of choosing the correct
sensor update to CTF track assignments at each DF processing cycle. It focuses on the complexity faced by the
assignment, i.e. the update-to-track association, component.

The approach assumes that sensor reports are compromised by errors whose statistics are known, and that reports are
not intentionally misleading. For example, reported positions must approximate the distribution reported, for exam-
ple, by means of an error ellipse. Scenario complexity changes over time. Therefore, the complexity measures gener-
ate an average of the instantaneous complexity for a given section of the scenario. Sections (intervals) are chosen to
be long enough to smooth statistical variations.

FIGURE 2. Fusion system output performance and errors can be explained from contributing factors.
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For RPA data fusion testing we selected five categories of test scenarios, see Section 4. Each of the five categories
examines DF performance in the light of specific adversity. A “Braid” scenario contains multiple intersecting undu-
lating tracks. A simulated “Mountain Pass” scenario stresses correlation algorithms with targets maneuvering in
extreme proximity. A “Spiral” scenario simulates successively increasing report intermittence with multiple spiraling
tracks. A “200 Track” scenario stresses DF throughput with 200 targets reported by five sensors with overlapping
coverage. Scenarios within each test category vary individual target proximity, sensor positional accuracy, reporting
intermittence, and/or target classification accuracy. Most scenarios were designed to be artificially and overly com-
plex in order to collect enough errors to be able to draw valid conclusions.

3.1  Ground Truth Complexity

Ground Truth (GT) complexity is characterized by two factors: GT attribute complexity and GT time complexity. The
effects of attribute complexity are felt due to sensor inaccuracies, and the effects of time complexity become critical
because of sensor reporting intervals and intermittency. Calculation of both GT attribute and GT time complexity
hinge on the definition of an appropriate report-to-report distance metric.

3.1.1  GT Attribute Complexity

The proposed measure of GT attribute complexity is based on the distribution of distances between attributes of GT
targets, measured by a suitable distance metric and averaged over a chosen number of samples. It is not a single num-
ber but a representation which allows us to derive how many of the targets are closer to each other than a chosen
threshold. This formulation expresses complexity relative to a particular resolution, i.e. the chosen distance threshold.
This measure answers the question “How difficult is it to distinguish the targets in the scenario?”

Instantaneous GT attribute complexity is calculated from the instantaneous distance distribution by the formula

where  is the GT scenario,  the chosen resolution,  is the distance distribution of the scenario, n is the num-

ber of targets in the scenario, and  is the number of target pairs.

We multiply the probability integral by the number of target pairs, in order to count the number of targets clustered
within the resolution. This way, a scenario of 10 distances between 5 targets, where 5 distances are smaller than r, has
complexity 5 instead of 0.5, and a scenario of 28 distances between 8 targets where 14 are close together has com-
plexity 14 instead of 0.5 also. This formulation captures how many “difficult” decisions might have to be made select-
ing between close neighbors, if sensor reports directly represented ground truth targets. Figure 4 shows an example of
a possible distance distribution.
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For a specific GT scenario and resolution this quantity can be calculated as

where  is the number of pairs of targets whose distance is smaller than r.

Figure 5 illustrates how the attribute complexity of the scenario depends on the chosen resolution. The attribute reso-
lution r is a multidimensional quantity like the distance between (the attributes of) two targets. Later we will see how

sensor characteristics determine resolution and thus allow to pin down GT complexity relative to sensor characteris-
tics/resolution.

Interestingly, it is possible that, given two GT scenarios, one is less complex if the resolution is very high (small dis-
tances can be discerned) but becomes more complex for lower resolution, see Figure 5. Therefore, it is necessary to
specify attribute resolution r before GT attribute complexity can be calculated.

3.1.2  Distance Metric

The complexity distance metric, like the similarity function used in the data fusion correlation process, has to mea-
sure how similar (or different) the attributes of two targets are. Target attributes include position, velocity, accelera-
tion (commonly collected into a state vector), emission characteristics in the RF and optical frequency bands, exterior
appearance, radar signature, etc. Typically, distances are measured independently for each of these dimensions and
subsequently combined via a distance combination function. Any monotonic distance and distance combination func-
tion is acceptable for the proposed complexity measure. Problem specific methods must be developed for discontinu-
ous attributes, such as radar signature. For RPA DF testing, we only used positional Euclidean distance to measure
distance for the complexity metric.

3.1.3  GT Time Complexity

The proposed measure of GT time complexity is based on the distribution of the distances  between succes-

sive states of all targets over a nominal time increment , averaged over a suitable amount of time. The size of the
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time increment is not critical as long as the changes that occur during the time intervals to be considered can be
approximated by a linear extrapolation of the changes during the chosen increment. Of course, the time increments
must be identical when the GT time complexity of different scenarios are to be compared. This measure answers the
question “How much does the scenario change over time?”

GT time complexity captures a generalized (linearized) maneuverability measure of the targets, i.e. how rapidly target
attributes change. High GT time complexity results from rapid change in target kinematic attributes, such as high
speed, acceleration, and jerk (i.e. change in acceleration), and also changes in discrete attributes. For example, a tar-
get with multiple emitters which are operated independently can present a greatly different EW signature from one
instant to another. Simply turning emitters on and off and changing emitter modes also contributes to generalized
maneuverability.

The same distance function as is used to generate GT attribute complexity can be used here. GT time complexity
must be expressed relative to time resolution, which is realized by sensor sampling intervals. Instantaneous GT time
complexity is defined as the average of the instantaneous time-based distance distribution using the formula

where  is the GT scenario,  the chosen time resolution, and  the distribution of the incremental distances.

Therefore, it is necessary to specify the time resolution  before GT time complexity can be calculated. However,

unlike GT attribute complexity, GT time complexity is linear in  and the complexity-ordering of scenarios does not

depend on , i.e. if a scenario has higher GT time complexity than another at time resolution , it will also have

higher complexity at any other arbitrary time resolution .

3.1.4  Total GT Complexity

Total GT complexity is a function of GT attribute and GT time complexities.

A possible (rough) measure of total GT complexity is

where attribute complexity is evaluated at a resolution determined by time complexity. This measure answers the
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question “How relevant are the changes in the scenario over a specified amount of time, i.e. are the changes in target
attributes large enough to impact target distances?”

This measure is a compromise which assumes that target attributes are evenly distributed. If, for example, a scenario
consists of one set of slowly changing targets that are far apart and another set of quickly changing targets that are
close together, the proposed measure of total GT complexity will underestimate the complexity of this scenario. A
more precise measure has to combine distance and maneuverability for each target separately and aggregate the
results for all targets in the scenario. This is analogous to the current Assignment Level of Difficulty metric.

A more precise measure of total GT complexity for a specific resolution is

where  is the number of inter-target distances which can be exceeded by the averaged maneuverabilities

 and  of targets j and k over time .

3.2  Sensor Report Complexity

The proposed metric of sensor report (SR) complexity measures how difficult it is to construct continuous tracks from
often sporadic, discontinuous sensor reports. It is based on the concept of the report-to-report variation between suc-
cessive reports. It applies equally to single and multi-sensor scenarios, continuous and intermittent sensor reports, and
varying amounts of attribute information provided by sensor reports. It can be measured knowing just the GT identity
for each report and without knowing GT attributes.

3.2.1  Limitations

The proposed SR complexity measure does not measure how far the sensor reports deviate from GT but only how
separable, consistent, and continuous the reports are with respect to each other. If a sensor reports position with a con-
stant offset, however large, and no noise, its consistency is very high and its variation low; thus, the resulting SR com-
plexity will be low, even though the GT cannot be reconstructed precisely from the sensor reports due to the
positional offset. An additional, separate measure of attribute, e.g. positional, bias should capture systematic GT to
sensor report differences, i.e. SR bias.

3.2.2  Report-To-Report Variation

Report-to-report variation is the change in attribute values between successive reports on the same GT target, regard-
less of which sensor supplied the report. Report-to-report variation is analogous to GT time complexity, where the
time resolution  is now determined by the interval between successive sensor reports, and sensor errors add to
apparent target maneuverability.

Variation between successive reports from one sensor or between coincident reports from multiple sensors create
opportunity for error. The ideal sensor would report infinitely fast and perfectly accurately, so that variations between
successive reports become infinitesimally small. Variations are caused by sensor imperfections and by target maneu-
verability, which is the more detrimental the lower the reporting rate. For the purpose of measuring SR complexity, it
is irrelevant what caused the variation, be it target maneuverability, unequal bias among multiple sensors, or sensor
noise.

Instantaneous report-to-report variation is defined as the change over time in reported attribute values
 between the two most recent reports on target j received at times . Tar-

get report variation, , is the average of instantaneous report-to-report variation calculated over a sliding

time window for each target.
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Missing Attribute Values. Missing (unreported) attributes require special processing. We propose to maintain a
moving average of the differences between values of specific attributes from report to report, and to substitute this
average for the actual difference when attribute values are not reported in either or both of the reports which are being
compared. In the average calculation, a difference involving a missing attribute is considered to be zero. Initially, the
average difference is set to zero. It remains zero if the attribute is never reported.

3.2.3  Correlation Complexity

Correlation complexity quantifies the difficulty of correctly correlating sensor reports with existing fused tracks
despite target maneuverability, sensor noise, and sensor intermittence. The complexity calculation does not maintain
fused tracks but estimates the difficulty directly from the stream of sensor reports. It predicts for different scenarios
the relative number of assignment errors committed by a fusion algorithm operating on the stream of reports. Actual
assignment errors depend on the performance of the fusion algorithms. The difficulties associated with establishing
new tracks and dropping terminated tracks are addressed only indirectly by their effects on the assignment process.

The proposed measure assumes that sensors deliver at time  new reports  to the fusion system in batches of

m reports. The m reports may include false target reports. The measure assumes to also have access to the latest report
 on each of the true targets , regardless of which sensor reported it, but does not presume the

existence of a fused target track. Time  is not a fixed instant in time but the last time a report for target j has

been received.

The calculation is processed in four steps. In Step One, a confusion set  is generated for each target j updated in

. This set contains all the reports from the set  which are within the target report-to-report variation of

the updated target j.

In Step Two, we determine the number of confusion sets that each report i falls into.

In Step Three, we calculate the correlation complexity for one update cycle, i.e. for one batch of sensor reports.

In Step Four we calculate scenario correlation complexity by summing over the correlation complexity per update for
the length of the scenario. The scenario correlation complexity calculates the number of chances for correlation
errors.

Scenario correlation complexity serves as the Sensor Report (SR) complexity metric.
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3.3  Assignment Level of Difficulty

Assignment Level of Difficulty (ALoD) is calculated as the data fusion system is executing. ALoD is measured for
each fused track when similarity (or cost) functions are computed for that fused track and the new sensor reports. For
a given fused track, if a sensor report exists with the same target number as that fused track, then the difficulty is com-
puted using the algorithm shown below. Otherwise, the difficulty for the fused track is defined to be the number of
sensor reports.

When an assignment is made of a sensor report to a fused track, the difficulty for that CTF track is added to a cumu-
lative total of difficulty for all assignments for that fused track, as well as to a cumulative total of the difficulty of all
assignments made by Data Fusion. If the assignment was an error, the difficulty is also added to cumulative totals of
difficulty for erroneous assignments for both the fused track and all of Data Fusion.

Assignment Level of Difficulty calculates a measure of confusion possibilities for a particular fusion system, which is
analogous to the generic metric of error possibilities that constitutes Sensor Report complexity. ALoD predicts
assignment errors committed by the fusion algorithm more precisely than the SR complexity metric which is based
only on the stream of sensor reports.

4. TEST SCENARIOS AND RESULTS

The performance and complexity assessment techniques described above supported development, tuning, and valida-
tion of the RPA data fusion subsystem. Tests were executed using an instrumented version of the DF code and using
test data from an input simulator which attaches ground truth tags to the sensor reports. Knowledge of ground truth is
necessary to judge the correctness of the correlation and assignment process. Each scenario was executed multiple
times and the resulting performance data were averaged. A suite of analysis tools was used to calculate aggregate per-
formance measures from the data collected. Ground truth (GT) and Sensor Report (SR) Complexity were determined
before each run. Assignment level of difficulty, assignment errors, and the Central Track File (CTF) output, i.e. fused
track oputput, were captured during each run. Assignment errors determine correlation performance. The differences
between ground truth tracks and CTF tracks determine kinematic and classification accuracy. In cases where multiple
CTF tracks approximate a GT track or where updates for one GT track were alternately associated with two or more
CTF tracks, the CTF track which approximated the GT track most closely was used for comparison. Other CTF
tracks are false tracks or represent a different GT track.

Figure 7 and Figure 8 summarize the major results of DF performance testing. Figure 7 illustrates the sensitivity of
DF to two of the most critical scenario parameters: GT inter-target distance and sensor positional error. The table
shows that more closely spaced targets need to be observed with more precise sensors in order to get optimal perfor-

Set of sensor reports=
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PT Player number of sensor report or fused track T=

ZS,C K
CorrectC CostS,C–( )

CorrectC
-----------------------------------------------------exp=
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mance. Nevertheless, DF tolerates occasional errors that are larger than the minimum target separation. Similar
results were obtained with varying report intermittence.

Figure 8 illustrates the kinematic accuracy of a set of six tracks when reports are becoming more intermittent as indi-
cated by the dotted lines. Every report received realigns the CTF tracks with the ground truth. During intervals when
no reports are received, the tracks are coasted in straight lines and drift away from the GT tracks. GT tracks travel
along curved paths with constant radii of 50, 100, 200, 500, 1000m, and infinity at a speed of 10 m/s.
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FIGURE 7. Systematic performance assessment reveals thresholds of data fusion system performance.
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In summary, system requirements were proven to be satisfied. The test methodology described here has been shown
to correctly predict DF performance within the context of the RPA system.

4.1  Methodology for Generating Scenarios

In order to adequately test any Data Fusion system, a wide range of scenarios is required so that performance can be
evaluated under all of the conditions which may impact the performance of the fusion system. Our methodology for
testing the Data Fusion system developed under the Rotorcraft Pilot’s Associate program included the following
steps:

1. Identification of all conditions or combinations of conditions which may impact the performance of the fusion
system. These are described in section 5.2 below.

2. Definition of a prototype scenario for each condition or combination of conditions to be tested. A prototype sce-
nario includes the number and type of target entities, the approximate trajectories, the length of the scenario, and
the number and type of sensors providing data to the type data fusion system. Use the Data Fusion Input Simulator
(DFIS), described below, to generate the basic scenario.

3. For each prototype scenario, select one or more scenario parameters to vary to test the conditions for which the
scenario was selected, and the range for the selected parameters. For example, if the condition to be evaluated
were the homogeneity or heterogeneity of class information in the incoming sensor data, the scenario parameters
to be varied might include whether or not the sensors could determine and report class information about the tar-
gets.

4. For each combination of values for the selected parameters, use the Data Fusion Input Simulator to generate data
files for input to Data Fusion representing the sensor input to data fusion from the scenario with that combination
of parameters.

5. For each variation of a single prototype scenario, run Data Fusion with the input created for that variation, and col-
lect the data described in sections 2 and 3.

Test emphasis was placed on further quantifying the range of scenarios and sensor configurations within which Data
Fusion performs reliably and accurately. Scenario parameters of interest include the number of targets, the separation
of targets, and target maneuverability. Sensor parameters of interest include the mix of active sensors, sensor accura-
cies, sensor intermittence, and sensor reporting rates. Testing identified how close DF is to meeting the performance
requirement of processing 200 Central Trackfile tracks at realistic maximum sensor input rates.

4.1.1  Data Fusion Input Simulator

In the development of a sensor Data Fusion solution for RPA, it is necessary to stimulate that subsystem with both
realistic and overly stressful sensor scenarios. The Data Fusion Input Simulator (DFIS) is a user-friendly engineering
tool designed for expedient creation of these on-board and off-board scenarios. The DFIS provides a means for RPA
Data Fusion subsystem development and stand-alone subsystem validation and verification. The DFIS was designed
with the intention of permitting an engineer to quickly and easily generate battlefield scenarios consisting of air and
ground vehicles. These scenarios may be developed in two ways: with a graphical drawing window that allows the
user to view a scenario as it unfolds, or non-graphically, by manipulating data files.

In either mode, the user creates a scenario by specifying overall scenario characteristics, such as the duration of the
scenario and the maximum number of battlefield entities or players. The trajectory of each player is defined as a series
of waypoints, and the vehicle type is selected from a pre-defined taxonomy. In addition to player entities, the user
defines the set of sensors which can provide data to the data fusion system. There are a total of 21 possible sensors or
other data sources available to provide input to the data fusion system in RPA, including an onboard Target Acquisi-
tion System (TAS) - a MMW radar and FLIR combination, an onboard passive RF sensor, an onboard Laser Warning
Receiver, and a number of offboard sources including JSTARS, AWACS, and TAS and RF sensor data from up to
three wingman aircraft. Each sensor data source can be positioned independently or made to move with one of the
defined players, and set to operate in a desired mode, which can include Tracked Reports, Untracked Reports, Bear-
ing Only Reports, and Group Tracks, depending on the sensor. Other parameters, such as update rate, positional error,



probability of detection per target type, and classification capability, can be set for each sensor. The result is a very
powerful capability to specify all of the characteristics of the data that will be made available to Data Fusion.

DFIS generates two levels of scenario data. The first, Ground Truth, includes the true position, velocity, and other
properties of each player at 10 Hz intervals for the duration of the scenario. The second, sensor data, is generated
from the ground truth and consists of the sensor reports generated by the defined sensor data sources, whose timing
and characteristics depend on the parameters set for each sensor and on the underlying ground truth data. The ground
truth and sensor data are stored in a binary output file which is read by Data Fusion and by other software developed
to support performance analysis.

4.2  Types of Scenarios Generated

Table 1 describes the sets of conditions for performance analysis and expected impact on the performance of the Data
Fusion system.

Five types of test cases were created and evaluated. The five types of test cases are:

1. “Braid”: Group 1 of test cases (cases 1.1 through 1.17) are based on four variants of a scenario of ten vehicles
moving in close proximity on separate but intersecting sinusoidal tracks. Average target separation was set to four
different values: 50 m, 100 m, 250 and 500 m. Sustained minimum inter-target distances were 11, 10, 55, and 110
m. TAS and/or JSTARS report at varying rates. Sensor errors were varied. The effects of target class data and of
sensor tracking and filtering were also studied using these scenarios.

2. “Mountain Pass”: Group 2 of test cases (cases 2.1 through 2.6) model a group of 35 targets moving through a
mountain pass in dense formation with TAS and JSTARS reporting. Three different sensor configurations are
exercised: JSTARS at 25 km and TAS at 2 km, JSTARS at 100 km and TAS at 2 km, and JSTARS at 250 km and
TAS at 5 km. Results of DF performance with and without using class in the track-to-track association process,
i.e. in the cost function, are presented.

3. “Spiral”: Group 3 of test cases (case 3.1 and 3.2) analyzes the effects of target maneuverability and sensor report
intermittency with bursts of reports separated by increasing intervals where no reports are received.

4. “Mission”: Case 4 is inspired by scenarios used for the official RPA evaluations. TAS (with IFF), Team Member
TAS, EOB, JSTARS, and ASE sensors are active at different times.

5. “200 Track”: Case 5 determines maximum throughput performance of DF with a scenario of 200 targets moving
toward ownship in five groups of 40 vehicles each. A JSTARS and a TRIXS sensor are active. Each reports 60 tar-
gets every second, which is close to the maximum input rates for these two data sources. The onboard TAS and
AEOCM sensors report 80 and 20 targets, respectively, at a 10 Hz rate. Each sensor scans the set of targets for a
period of three minutes.

TABLE 1. Desired Conditions for Performance Analysis and Expected Impact On Data Fusion Performance

CONDITIONS TO VARY FOR ANALYSIS EXPECTED IMPACTS ON DATA FUSION
PERFORMANCE

• Target Separation

• Sensor Errors

Increase in Data Fusion Error Rate with decreasing
target separation or increasing sensor error.

• Sensor Distance

• Presence or Absence of Class Data

Increase in Data Fusion Error Rate with increasing
sensor range to target or absence of class data.

• Target Maneuverability

• Sensor Data Intermittency

Increase in Data Fusion Error Rate with increasing
target maneuverability or sensor data intermittency.

• High Target Volume Increasing error as Fusion is unable to keep up with
data volume.



5. CONCLUSIONS

Our systematic approach to data fusion system performance testing has proven to be an invaluable tool for system
development, tuning, and validation. We have established limits on the applicability of the fusion algorithms devel-
oped for RPA and have shown that the expected RPA mission scenarios fall within these performance limits. For
example, as shown in  Figure 7, the RPA data fusion solution performs nearly error-free given onboard and offboard
sensor errors of 10 and 40 m, respectively, as long as the inter-target distance stays above a minimum/average of 10/
100 m. The chart displays this value and the corresponding zero-error boundary, which can be drawn from test results
on scenarios with appropriately varied parameters. The one-percent error boundary of the RPA fusion system is
shown. too. Additional performance charts not shown here reveal constant error boundaries of fusion performance
relative to report update frequency and sensor error as well as to the combination of update frequency and inter-target
distance. These charts are the results of numerous, repeated tests on a large set of test scenarios.

With the approach described in this paper we can determine fusion system applicability without the cost of executing
the fusion system on a multitude of scenarios. Fusion system applicability can be determined directly from an analy-
sis of the characteristics of the expected scenarios via the Ground Truth and Sensor Report Complexity measures pre-
sented above. We have constructed reliable metrics which anticipate the sensitivity of the fusion system to the
fundamental scenario characteristics, such as inter-target distances, sensor errors, and sensor reporting rates. Figure 9
and Figure 10 below show that the Sensor Report Complexity metric accurately predicts assignment errors and subse-
quently ground truth reconstruction performance. The results presented are based on measurements on the “Mountain
Pass” and the “Braid” scenario, respectively. As shown in Figure 9, the point at 10/100 m minimum/average inter-tar-

FIGURE 9. Ground Truth reconstruction
performance and correlation errors
are proportional to Sensor Report
complexity. (Results from the
Mountain Pass scenario)

FIGURE 10. Results from the Braid scenario
corroborate the predictive power of
Sensor Report complexity.



get distance, where correlation errors first appear, is predicted exactly by the sensor report complexity measure. In
general, it can be observed that the correlation error curve follows the Sensor Report Complexity curve faithfully.

Ground truth reconstruction error does not continue to increase with Sensor Report Complexity and correlation errors
for the following reason. Complexity and correlation errors increase with decreasing inter-target distance, as shown in
Figure 9, because the sensor updates for multiple fused tracks become kinematically indistinguishable from each
other, i.e. they all fall within a tight neighborhood of the actual target position. Therefore, the wrong sensor report still
represents a good approximation of the actual target position and the kinematic quality of the fused track remains
unchanged despite the correlation error. On the other hand, when correlation errors become more numerous due to
increased sensor error, as in Figure 10, the ground truth reconstruction error keeps increasing, simply because the sen-
sor reports fall farther from the actual ground truth target position.

In the future we plan to implement classification accuracy and precision metrics and to re-target the performance
assessment methodology towards run-time fusion system tuning.
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